## Math 4550 - Homework # 6 - Normal subgroups and Factor Groups

## Part 1 - Computations

- 1. For the following groups G and subgroups H compute the left and right cosets. Are they equal? Is H a normal subgroup? Draw a picture of how the cosets partition the group G.
  - (a)  $G = \mathbb{Z}_{12}$  and  $H = \langle \overline{4} \rangle$ .
  - (b)  $G = D_8$  and  $H = \langle r^2 \rangle$ .
  - (c)  $G = D_8$  and  $H = \langle s \rangle$ .
- 2. Let  $G = \mathbb{Z}_{12}$  and  $H = \langle \overline{4} \rangle$ .

H is a normal subgroup of G. You don't have to check this fact.

- (a) Calculate the elements of G/H. What is the identity element of G/H?
- (b) Calculate  $(\overline{2} + H) + (\overline{3} + H)$ . Find the inverse of  $\overline{3} + H$ .
- (c) Find the order of  $\overline{1} + H$  in G/H. Find the order of  $\overline{2} + H$  in G/H.
- (d) Is G/H abelian? Is G/H cyclic? If G/H is cyclic, state a generator.
- 3. Let  $G = D_8$  and  $H = \langle r^2 \rangle = \{1, r^2\}.$

H is a normal subgroup of G. You don't have to check this fact.

- (a) Calculate the elements of G/H. What is the identity element of G/H?
- (b) Calculate (rH)(sH) and (srH)(srH).
- (c) Find the inverse of rH. Find the inverse of sH.
- (d) Find the orders of H, rH, sH, and srH in G/H.
- (e) Is G/H cyclic? If G/H is cyclic, state a generator.
- 4. Let  $G = \mathbb{Z}_3 \times \mathbb{Z}_3$  and  $H = \langle (\overline{0}, \overline{1}) \rangle$ .

H is a normal subgroup of G. You don't have to check this fact.

- (a) Calculate the elements of G/H. What is the identity element of G/H?
- (b) Calculate  $[(\overline{1}, \overline{2}) + H] + [(\overline{1}, \overline{1}) + H]$  and  $[(\overline{0}, \overline{1}) + H] + [(\overline{2}, \overline{1}) + H]$ .
- (c) Find the inverse of  $(\overline{1}, \overline{2}) + H$ . Find the inverse of  $(\overline{2}, \overline{2}) + H$ .
- (d) Find the orders all the elements in the group.
- (e) Show that G/H cyclic and list all of it's generators.

## Part 2 - Proofs

- 5. Let G be a group and  $H \leq G$ . Let  $a, b \in G$ .
  - (a) Prove that aH = bH iff  $a \in bH$ .
  - (b) Prove that aH = bH iff a = bh for some  $h \in H$ .
  - (c) Show that if |H| is finite, then |H| = |aH|. [Hint: Show that  $f: H \to aH$  where f(h) = ah is one-to-one and onto.]
- 6. Let G be a group where |G| = pq where p and q are primes and  $p \neq q$ . Let H be a subgroup of G with  $H \neq G$ . Prove that H is cyclic.
- 7. Let G be a group with identity element e. Suppose that |G| = n. Prove that  $x^n = e$  for all  $x \in G$ .
- 8. Let G be a group and H be a normal subgroup of G.
  - (a) Prove that if G is a abelian, then G/H is abelian.
  - (b) Show that  $(aH)^{-1} = (a^{-1})H$  for any  $a \in G$ .
  - (c) Show that  $(aH)^k = (a^k)H$  for any  $a \in G$  and integer k.
  - (d) Prove that if G is a cyclic, then G/H is cyclic.
- 9. Let G be a group and H and K be normal subgroups of G. Prove that  $H \cap K$  is a normal subgroup of G.
- 10. Let  $G_1$  and  $G_2$  be groups. Let  $\phi: G_1 \to G_2$  be a homomorphism. Show that the kernel of  $\phi$  is a normal subgroup of  $G_1$ .

## Part 3 - The problem below is OPTIONAL.

11. Let G be a finite group and H be a subgroup of G. Prove that if H is only subgroup of G of size |H|, then H is normal in G.

[Hint: Given  $g \in G$ , consider  $\phi_g : H \to G$  given by  $\phi_g(h) = ghg^{-1}$ . Use the fact that the image of a homomorphism is a subgroup.]